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PART I

SCATTERING CROSS SECTIONS FOR RANDOM ROUGH SURFACES

--FULL WAVE ANALYSIS

'iol Ezekiel Bahar

Electrical Engineering Department

University of Nebraska-Lincoln

Lincoln, Nebraska 68588

Abstract

The full wave approach developed earlier to evaluate the radiation fields

scattered by deterministic two dimensionally rough surfaces is used here to

determine the scaLering cross sections for random rough surfaces. The medium

below the irregular boundary is characterized by complex permittivity and

permeability. For slightly rough surfaces, the full wave solutions for the

incoherent scattered fields are shown to be in agreement with the perturbation

solution. However, when the major contributions to the scattered fields come

from the region of the rough surface around the stationary phase (specular)

points, the full wave solutions are in agreement with the physical optics solutions.

Thus, the full wave solutions which reduce to the perturbation, the physical otics

and the geometrical optics approximations in special cases, precisely determine

the limitations of these approximations and reconcile the differences between them.

The full wave solutions satisfy duality, reciprocity and realizability

relations in electromagnetic theory and they are invariable under coordinate
Accnsston For
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1. Introduction

The full wave solution cor the scattecd radiation field by deterministic

two dimensionally rough surfaces (Bahar 1980) is applied, in this paper, to problems

of scattering and depolarization by random rough surfaces. The results f this

analysis are compared with the solutions derived from two general approaches to random

rough surface scattering problems: the perturbation technique and the Kirchoff-Physical

Optics approximation (Ishimaru 1978). The perturbation technique, which applies to

surfaces that are slightly rough was used by Rayleigh (Strutt 1896) and extended by

Rice (1951), Barrick and Peake (1968), Barrick (1970, 1971), Wright (1966) and Rosich

and Wait (1977), Valenzuela (1978). The Kirchoff-Physical Optics approximation technique

was applied to surfaces with radii of curvature that are much larger than the wavelength

of the electromagnetic excitation (Beckmann and Spizzichino, 1963, Beckmann 1968,

Ament 1953).

The principal elements of the full wave approach are (Bahar 1980): (a) Complete

expansion of the fields into vertically and horizontally polarized waves. The

complete spectrum if the waves consists of the radiation fields (considered

here in detail) and the surface and the lateral wave terms (Bahar 1973a,b).

(b) Imposition of exact boundary conditions at the irregular interface between

two media y > h(x,z) and y < h(x,z) characterized by complex electromagnetic

parameters c and W for exp(iwt) time harmonic excitations. Thus approximate

impedance boundary conditions are not used in this work. (c) Use of Green's

theorems tc avoid term by term differentiation of the complete expansions.

(d) Conversion of Maxwell's equations into rigorous sets of coupled first-

order differential equations (generalized telegraphist's equations) for the

wave amplitudes. (e) Use of a variable coordinate system that conforms with the

local features of the rough surface. Thus tbere al" no restrictions on the height

or slope of the rough surface, and both upward and downward scattering of the

incident fields are accounted for in the analysis. The effects of shadowing can

al!-o be Included in the full wave analysis. The full wave solutions are shuwn t.
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satisfy duality, reciprocity and realizability relationships in electromagnetic

theory (Bahar 1980).

For the convenience of the reader, the full wave solutions for the radiation

fields scattered by deterministic two-dimensionally rough surfaces, are summarized

in Section 2 since they constitute the starting point of the present analysis.

Of particular interest in this work is the bistatic scattering cross section per

unit area for rough surfaces (See Appendix A) (Barrick 1970, ishimaru 1978).

The full wave solutions for the scattering cross sections are developed first for

slightly rough surfaces in Section 3. In this special case the full wave

solutions are shown to be in complete agreernent with the scattering cross sections

for the incoherent (diffuse) fields (Barrick and Peake 1968).

In Section 4 of this paper, the full wave approach is applied to rough surfaces

with normal height distributions. In this section it is shown that if a high

frequency stationary phase approximation is made to the full wave solutions, the

expression for the scattering cross section reduces to the Kirchoff--Physical Optics

solutions, (Beckmann and Spizzichino 1963, Ishimaru 1978), with the exception

that here, consistent with reciprocity, the Fresnel reflection coefficients are

evaluated at the stationary phase points, rather than at the angle of incidence

with respect to the reference plane.

Except for scattering in the specular direction with respect to the

reference plane (af - 0 i), the perturbation and the physical optics solutions are
0 0

not in agreement even for slightly rough surfaces. Since both the perturbation

and physical optics solutions are derived here (as special cases) from the full

wave solution, the limitations of each of the two special approaches are

examined and the differences between these two solutions are reconciled. Thus

it is shown that the physical optics solutions cannot be used when the major

contributions to the scattered fields do not come from regions of the rough surface

around the stationary phase points. As a result, the perturbation solution

4

- -. - -~~~~- - - -. - - - -- - _ _ _ _ _ _
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(and not the Physical Optic& solution) should be used for slightly rough surfaces,

even when the radii of curvature for the rough surfaces are much larger than the

wavelength.

For very rough random surfaces, it is shown that in agreement with the Physical

Optics solution, the scattering cross section is proportional to the probability

density function for the rough surface slopes. However, even at high frequencies

these solutions cannot be used when the incident or scatter angles are much larger

than the mean value of the rough surface slope (see Section 4).

The full wave approach is not limited to slightly rough surfaces or to the

special cases when the stationary phase approximations are valid. However, in these

two special cases the full wave solutions simplify significantly since they do not

depend explicitly on the slopes of the rough surface. In Section 5 the relation-

ships between Physical Optics, Geometrical Optics, Perturbation and the Full Wave

solution are summarized.

It is interesting to note that in order to obtain the perturbation solution

(as a limiting case of the full-wave solution), it is assumed here that the slope

of the rough surface is small but no restrictions are made on the height of the

rough surface. Thus, the perturbatioi solution derived here contains both the

incoherent (diffuse) scattered fields (Rice 1951, Barrick and Peake 1968, Barrick

1970, 1971, Wright 1966, Rosich and Wait 1977, Valenzuela 1978) as well as the

coherent scattered fields (see Section 3 and Appendix A).
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2. Formulation of the Problem

The starting point for the present analysis of scattering and

depolarization by random rough surfaces is the full wave solution for the

scattered radiation field by deterministic, two dimensionally rough

surfaces (See Fig. 1):

y - h(x,z) = f(x,y,z) = 0 (1)

The incident and scattered radiation fields are decomposed into a complete

spectrum of vertically and horizontally polarized components with respect

to the reference plane normal to a . Denoting the incident and scatteredY

fields by the superscripts i and f respectively and the vertically and horizontally

polarized components of the fields by the superscripts V and H respectively,

the electric and magnetic fields E and TI can be expressed in matrix

notation as follows:

E Vi H iE Vf H Vf

G TI- (2)
E iHii HfH f

where no = (P o/ ) is the intrinsic impedance for free space. The full

wave solution for Gf is (Bahar 1980)

cinTfFT i exp'Lik (nf-ni)'- U(r )dA-n G
0 0 0 s

A

G C(nf,i )G i  
(3)

An exp(iwt) time dependence is assumed and the constant G is given by
0

Go 0 -ik expL-ik r j/2r (4)

where k 0 (p 0/c ) is the free space wave number and

f f -f f f 1-1-15 5
r = r n r f(sinOf cosp f a + cosOf a + sinGf sin f fa) (5)

0 x 0 y 0 z

is the position vector to the observation point. The position vector
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to the source is

-i i -i . . ...- - 1

r = -r n = -r Lsin6 cos a - cosOo a
y 

+ sinG0 sinDi a (6)

in which n is the direction of propagation of the incident waves.

The position vector to the rough surface is

r. = Xax + h(x,z)ay + Zaz = r - f(x,y,z)ay , (7)

in which f(x,y,z) is given by (1). The elementary area of the rough

surface is

dA = n dx dy/(nay) , (8)
y

in which n is the unit vector normal to the rough surface:

n Vf/VfI =L-h a + a - h a j/(h2 + + h 2 )x x y z Z x hz

7 siny cos6a + cosy a + siny sin6 a , (9)
x y z

and

h = 3h/Ix , h = 3h/az (10)x z

A local Cartesian coordinate system with coordinate surfaces normal to

the unit vectors nil n2 and n3 is employed to derive the full wave solution:

n= n x(ax x n)/fax x ;1, n2 = -n and fl3 = (a x n)/ja x (1)

The vertically and horizontally polarized components of the incident and

scattered electric and magnetic fields with respect to the local plane,

normal to the unit vector i, are denoted by the subscript n.

They are related to the compenents with respect to the reference plane

through the transformationsn., i, .i.,
Gin T' G (12)d

nq c ,(12

_ _ _ _ -
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and
adVfI f f' Vf

Gf  T f G f n  -S ,)
- =Tf n= (13)

E VH ~ S f f~ tE H
If

in which C and S are the cosine and sine of the angle between the local

plane of incidence and r'ference plane of incidence normal to the unit vectors

a Hi and a ,respectively. Thus they can be expressed in terms of the

scalar product and the scalar triple product:

Ci osi -f -n i .i1 - n--
=c Hia Hi ,S = sl = La Hia n J (14)

wiere
-i- )/in'x (i -/I-iI-

Hi (n1X ay 1 x a a = n n n (15)
Hiy y HI ''~

f fSimilarly C and S are the cosine and sine of the angle between the local

plane of scatter and the reference plane of scatter normal to unit vectors

a Hf and a Hf respectively. Thus

fco - - f sinif - -n a f] (16)
s)= aHf aHf $ S si = LaHf aHf

where

a -If- -f- 1 an -f -)Inx(17)
Hf (nx ay )/In x ay a Hf = (nfx n)/Inxn

- Q fn -ni-

The elements FPQ(P,Q=V,H) of the 2x2 local scattering matrix F(n fn )

in (3) are (Bahar 1980):

(sfn-q-(n' fn in
2CoLY( ' fn )-S (l-/Dr)+(i-r)Cos( -p )

inFVV o o r (18)
( rF C r (1f8a(C8rn + C fn

C )

2Ck ~ ~ 0 r~ 0;f~n(f~1lsnf r 0co((

inFHl 0s( r2.°n l - , (l-i/l fn in
C inF HI - 0 r )0, (18b)

o (C in fn f in fn (18d)oc / / )) (C +C ir) (C + C

i V r 0 I 0 0

C inF 11 - (18c)

C 0 imi fn fn in fn _ 1d

(C04 ir)C 9 )C
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in which the dimensionless quantities nr, r' Lr and pr are the refractive

index, relative intrinsic impedance, relative permittivity and relative

permeability ,respectively,

=r ( l E o P ' 1 = "/Tjo (e l

r o r u o

Cr C 1/cot =  ''i~o (r9)

The media for y > h(x,z) and y < h(x,z) are denoted by the subcripts o and 1

respectively. The permittivity and permeability for medium I can in general,

be complex to account for dissipation. The cosines and sines of the angles of

incidence and scatter (with respect to the local coordinate system) 0 in and
U

0f n in free space, y h(x,z), are given by:
0

in in -i -f fn cosefn -f -= coUsu -n " n , = =e n -n ,(20a)
0 0 0 0

S in' S n, n n xn n (20b)
o 0

The sines of the corresponding angles in medium 1, y < h(x,z), are given by

Snell's law:

T in = sin6in Sin /n 5 fn . 0 fn =fn/ (21)

Thus

0 icos n  = [l (Sin)2 , , _f fn fn 2 (22)CI  = o, I  cose1=[I( (22)

The cosine and sine of the angle between the planes of incidence and scatter

in the local coordinate system, () are given by:

fn in -n
an -a (23a)

and

fmi in .- n -n1
s in( f-_i)= aHf aIin n] (23b)

The shadow function U(rs) in (3) is

(1 , illuminated and visible region

u(0r = I
!1o ,nonilluminated or nonvisible region (24)
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The nonilluminated (shadow) region of the rough surface extends from the
lou-fpo~ -i - -i

locus of points to the locus of points r = r s2 that satisfy

-1 (1 - -i [Is  --
n nsr 0 and (r s r 9fl(K) = 0 (25)

Similarly, the nonvisible region of the rough surface extends from the locus
- -f - -f

of points r. = rsl to the locus of points rs = rs2 that satisfy

-f.- -f -f -f (26)
n n(r ) =0 and (r - r ).n(r)

si S2 sl si

The full wave solution, (3) satisfies reciprocity, duality and reaiizability

relations in electromagnetic theory (Bahar 1980). Of special interest in

this work is the normalized scattering cross section per unit area for rough

surfaces (Ishimaru 1978):

GPQ - 4n(rf)
2 EPf 2 /AyJEQ12 (27)I y

in which A is the projection of the area of the rough surface A on the
y

reference plane normal to a . Thus for P,Q =V,H

k2 k2 ( y
oPQ= o IPQI 2= o " ,QPQP A k -A--( ) exph ik° (nf-n )

• (rs-r) dx'dy '

7M I ~C 2 A ID (r s)D~ (-,)ep -f--i .- s-s)jU(rs)U(r') dxdy

y y J (na )(n'ay)

in which the symbol * denotes the complex conjugateand DPQ 
(28)

are the elements of the matrix D:

f VVi VH i i f HVci FHsi f VV i VHci f HV i Hh i
C (F C -F S )-S (F C -F S C (F S +F C )-S (F S +F C

D =C T FT = K
f (F o .f.VV VH i f (_HVi FIIH i. f VV i VH i f HV i+ HH io LS (FC,-F S.,)+C,(,j C-F s ) S,(F S +F C,)-+Co(F S,FHC,)

(29)

PQ-
Sirv D (r s) is a funution of the angles of incidence and scatter in the

lcdl coordinate system, (11), it depends explicitly only on the gradient

of the ruugh surface Vf (9). The exponent

expik a(n -n ).(r s-rs
' ) exp[iv (x-x')+ iv z(z-z')+ iv (h(x,z)-h(x',z')J, (30)o y xz

I

-W --
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depends explicitly only on the height of the rough surface h(x,)). ['ht* i

vector v defined in (6.30) is given by

v v a + v a +v a = k (n-n) (31)x y y y z z o

The shadow function U(r ) (24) in general, depends on the gradient of the

rough surface, through the unit vector n (9), as well as on the height of

the rough surface h(x,y), (25), (27). However U(r ) # I only if n - 0

-f -
or n 'n < 0 on portions of the rough surface independent of h(x,z). Thus,

the shadow function U(r ) is more sensitive to the gradient of the rough
5

surface than to its height (Sancer 1969, Brown 1978).

The remainder of this paper deals with random rough surfaces for which

only the statistics of the height h(x,z) and its gradient are assumed to be

known. Section 3 deals with slightly rough surfaces and the full wave

solutions are compared with the perturbational solution (Rice 1951, Barrick and Peake

1968,Barrlck 1970,Rosich and Wait 1977). In ection 4, h(x,z) is assumed to be normall.

distributed and no restrictions are made on the variance of the rough surface.

These solutions are compared with both the perturbational and physical optics

solutions (Beckmann and Spizzichino 1963).

3. Incoherent Scat ering Cross Section Per Unit

Area For Slightly Rough Surfaces.

For the incoherent, diffuse field, the scattering cross section for unit

cross sectional area is given by (Ishimaru 1978):

< PQ > = 4ff(rf) 2 < iEf-< E > 12 > /A IEQiI 2  (32)

in which the s Luio. < > denotes the statistical average. For slightly rough surfaces

tan y << 1 and n is set equal to a in (3). Thus

T - I , T - I , U(r ) - 1 , n - a y 1 , (33)
s y

in which I is the 2 x 2 identity matrix. Thus, the elements of the matrix D (29)

.!I. no longer functions of position and may be extracted from the integral, (32).
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The incoherent scattering cross section, (32) reduces to

k2o D 
Q ,2

< (PQ
0 Tr ' (34)

in which

DPQ = (C inFPQ)n a (35)
0 o n a

y
and

'2
expLiv (x-x)+ iv (z-z')jLx (V '-v )-;x(V )1 .2dxdy dx'dy' (36)

Ax z 2 y y y

A
Y

The characteristic function X(v ) and the joint characteristic function
y

X(Vy,-vy) are defined in terms of the probability density function W(h) and

joint probability density function W(h,h'):

X(Vy) = exp(iv h)W(h)dh (37)
3 y

and
x(V'_-v) = expjivy(h-h')]W(h,h')dh dh' (38)

Thus for slightly rough surfaces

exp(iv h) 1 +- iv h - v2 h 2/2 , (39)yy y
and

1 2< h2  1 22 , (40)x(Vy) 1=i-- Vy = 1-v a y '(0

y 2 y 2yo0

in which a is the variance of h and <h> = 0. Similarly,
0

(v -
2 <h 2 > + v < hh' > = 1 - v2 a 0(I-C) (41)

X2Vyy) Vy Y, y o41

in which C is the normalized correlation coefficient. Assuming that the rough

surface is statistically homogeneous and isotropic, the surface height

correlation function < hh' > depends only on

X d I x-x' and z d - z' (42)

Thus if the correlation distance is much smaller than the width of the illuminated

surface, (36) reduces to

-r --
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h> 2  2 2
expLiv Xd + iv z zdj < hh'> v y dx d dz d  ry W(vxv Z ) , (43)

in which W(vxv z) is the spectral density of the rough surface height

function (Barrick 1970, Ishimaru 1978). Thus the incoherent scattering

cross section for slightly rough surfaces is given by

< (JPQ > = i~k 4 W(v ,v ) C1 n nFPq(cO + cosO) 2 (44)

00 z 0 0 0 -*

The expression (44) is precisely equal to the perturbation solution for the

scattering cross section for slightly rough surfaces (Barrick and Peake

1968, Barrick 1970). In the notation used for the perturbation solution

CnF PQ(Cos0 + cosa )]- - = t 2 cosOf cosO' cP Q (45)Lo 0o -
Y

in which the upper and lower signs are used for Q = H and V, respectively.

For the perfectly conducting case the scattering cross section is given in

matrix form by

[sinO sine - cos(4 f-, i ) [cosou sin(f-¢ i )] 2

0 0 0

<a> 47 k w(v'v) o nf 2 , f f

[Cosa sin( p-p) LcOOcusO cos(( -0 0 0 (46)

f = i f iFor backscatter 0 = 7r(46) reduces to

sin 0i + 1)2  0
< > = 4T k4 W(2k sine 00) 0 Cos4 ( (47)o B o o o'

0

4. Incoherent -cattering Cross Section For Rough

Surfaces With Normal Distributions

When the slope of the rough surface is not small, the incoherent

scattering cross section for high frequencies , (32) can be written as follows

(see Appendix A):
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k2

SL X2(,-V )-x(V y)2expLivX+ VX dx dz (48a)

A
y

in which Q
DP (rs)DPQ (r )U(r )13(r' D (r )IU(r.) 2

<S > < ( a s S S 48t ,

(n.a )(nay) (a

To derive (48) it is assumed that the surface height and gradient are uncorrelateu (whict.

is true for Gaussian surfaces) and that the probability density function for tl,- .adow

fumction U(rT depends only upon the gradient of the rough surface (see Sectio;. 2)

As in Section 3. the rough surface is assumed to be statistically homogeneous

and isotropic; thus I and x2 depend only on Xd and zd (42).

For normally distributed surfaces the probability density function and the

joint probability density functions W(h) and W(h,h') are given by:

W. (h) -xp(-2
(27!) 2,

C,

and

1 2 - 2Chl,'+ h'W(hh) 2T 2 
( -C2  

2a2 
(I- c 2  

(0)

0 0

in which (o is the variance and C is the correlation coefficient. The corresponding
0

characteristic functions are

2 2
x(v ) -exp(-v j /2) (51)and 0

X2 ,-vy ) -expL-vz 22o(1-C)l (52)

Thus it follows that

(vy,-V) - IX(v )
2  

exp(-v2 (2)2exp(v 0
2 
C) -I (53)

2 y y y y

and the uu face height correlation function is

(2(x,y) , (X',' ) 32 C (54)

!0
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Thus for slightly rough surfaces (Vy ) 2 < , al, (54)reduces to

X2 (v,-V) -x(v y 2 v < hh'> (55a)

L > - = IDoI (55b)

and < P  
> is given by the perturbation solution, (44).

PQIf it is not assumed apriori th; t the surface is slightly rough, u P
-

cafn be expressed approximately as follows for high frequencies:
. 2PQ  kP --- . S (56a)

in which PQ _2
-vr 2 cy 2v p e ( v )[exp (v 2 a C) - .lpdp(5 b

where j is the Bessel Function of the first kind, and
2 2 % 21-

V (vx + v) and p = (xd + z (57)

2z x ( d)d

The correlation coefficient C is only a function of p.

Assuming a correlation coefficient of the form

C(Q) = exp(-P2 /fZ2 ) (58)

where k is the correlation distance, it can be shown that (Beckmann and

Spizzichino 1963):

1((vya o) 2exp(-v 2 22 R22 2 (V a0 2
ex(v 0- v 9.2 /4) = r v W(V)V << i ,

y 0 xz

(v (j 2

2= 2 . 0 y 0

In (56) S is ed by its value SQat the stationary phase points of the

Integrand in (3). Tihus (Bahar 1980):

SP Q  [cos0 F (0i'ts va u S 2 R s n (0 2 f (he3 n in 0 .

I I ,
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In view of thc Kronecker delta, S Q vanishes for P#Q.
PQ'

In (60) 0o is the local angle of incidence and scatter at the specular

points. Thus, 2 s f -1

cos 0 = (1-n' ni)/2
0

i f i f f- i
= + COSO0 cosO - sinO) sinO cos( -i )/2 (61)

The Fre:sneL reflection coefficients RP (0 s)(P=V,H) are evaluated at the
lo o

statiunary phase points where 5i - 0 0s and not at the angle of incidence 0 1 as done
0 0 0 0

inBeckmann and Spizzichino,1963. (Ishimaru,197?).The coefficient F is precisely
3

the expression derived for the Physical Optics solution (Beckmann and Spizzichino

1963) 2 cos 2 0s
F (,f qfi ) = o0

cosoi(cosfo + cosOo)

Thus the high frequency approximation for < oPQ > is given by

2 r 2s

< c > .k Si2 Cos 6 1 2 j 6)1 6(3
cosO ° + cosO

P PP
For the perfectly conducting case IR = 1 and < o > is independent of

polarization. Thus the full wave solution for the incoherent scattering cross

section reduces to previously derived Physical Optics results when the following

conditions are satisfied.

(a) For high frequencies, the principal contributions to the incoherent

scattered field come from the stationary phase points of the integrand in (3),

(Bahar 1980). In this case n can be replaced by its value n at the specularly

oriented portions of the rough surface:
- -(f-i /lf-ni (64)

n I( nn -n (4

(b) The vectors n n and a are coplanar. Thus

-f

y s y s y_1 y nf -i L a j n o (65

and at the stationary phase points
I f = i = 0 (66)

f
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In this case the local and reference planes of incidence and scatter are

identical: i
1 fT = = , (67)

where I is the identity matrix

(c) The phase of the integrand in (3) varies rapidly for values of

r in the shadow region, thus the value of the integral does not change

significantly on replacing U(rs) by unity everywhere on the surface.

For slightly rough surfaces (63) reduces to

< 'P P > = 4 1 k 4  RP ( 6 s ) ! 2 C 4 s ( p 6 8o s 0 W(vx ,v) (68)

The above expression which satisfies reciprocity, is in agreement with the

Physical Optics solution given by Ishimaru (1978) with the exception that here

the reflection coefficient is evaluated at the specular angle( as required by the

stationary phase condition) and not at the angle of incidence. For backscatter

-f ~i - s
(n = -n = ns, coso

s 
0  1) (68) reduces to

< 0YP >B= 4 k4 ]Ri10 (O) 2W(2 ko sino ' 0) (69)

Note that for slightly rough surfaces the perturbation solution (44) is not

in agreement with the Physical Optics solution, (68) except at normal incidence.

This is because even at high frequencies condition (a) is not satisfied for

slightly rough surfaces except near normal incidence. For large angles of

incidence ,there are no stationary phase (specular) points on the slightly rough

suiface, thus even for high frequencies, the Physical Optics solution cannot, in

igeneral, be used for slightly rough sui faces when L- 0 is smaller than the mean
2 o

value of the slope " the rough surface o, where

tans = 2u /Z (70)
0 0

For very rough surfaces,[(v a) 2>> lJ, the scattering cross section is given by:
y e

__ .........._____________________
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<0 > 0 I R" (OS) 2 ~p(v /2va o 2
p 4.2 -f io~ 101 4

00 tcoso + cosOj R

= S ycy p(hxs ,hz R ( 0 s
2  , (71a)

in which p(h xsp,h zsp) is the Joint probability density function for the slopes,

(9), at the stationary phase points

2 2 2
1 h sp + hzsp 1xsp' zsp = , (71)

2Trc a 2a i 21To a 2

and

2 2 */an2 [2cosO/(cosO f + 2 2 2 2
sec y = + tan Y a /- n cs )l , s = .2 /k (71c)5 5 0

5 i f
Thus for backscatter (o 0, i = 0, = ), (71) reduces to

0

;RP 2 i
<oPP R> .1 0) P_(_____ _

itan 2  tan2 oej os " co 2)) (72)

P0 0J 0
in which Ro(0) is the Fresnel reflection coefficient for normal incidence.

Thus the full wave solution, (43) is in agreement with the earlier high frequency

results (Oarrick and Peake 1968). However, for very rough surfaces the Physical

Optics solutLon, (72) cannot be used near grazing angles, even for very high

frequencies, since,in these cases assumptions (a) and (c) are not satisfied,and

shadowing effects become important.

For the Physical Optics,or the perturbation approximations,derived in

sections 3 and 4, it is not necessary to know the complete statistics of the gradient

Vf of the rough surface. However, when these approximations are not valid, it is

necessary to determine the probability density function of the gradient in

order to evaluate the scattering cross sections <0 )Q> (48).

|4 ______________________
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5. Relationships Between Physical Optics, :eometrical Optics,

Perturbation Theory and the Full Wave Approach

For very high frequencies (3) can be written as

f = Dr)r e r ] dxdz

C Go exp[ivr (73)

n n .a
A s s y

where n is replaced by n ,its value at the stationary phase points (60),
S

v is given by (31) and G is defined by (4). Equation (73) is the physical
0

optics approximation of (3). To obtain the corresponding geometrical optics approximna-

tion, start by expanding v.r s about its value at a stationary phase point (where

r = r ). Thus
5 so

v.r = Vx + v z + vyLho+ h (x-x) + h (z-z
s z hxo (X-0) hzo U

xz[ (X-X ) + 2h (x-x )(Z-Zo) + h (Z-Z

sovr + __z (x-) + 2hxzo(x-x )(z-z o ) + h (Z-Zo)2 (74)

in which

h T/x- h =(3)h2 )
" " Ii

hxo ( h/ x)r ' xxo r s h xz = ( h/Dxaz)r soso so so
SO SOSO I (75)

" 2,
h (Dh/z)- and h ('h/3z)-
zo r Zzo r so

and

v + v h = 0 , v + v h = 0 (76)x y xo z y zo

Using a principal axis coordinate transformation about the stationary phase point,

r the geometrlcaloptics contribution from the neighborhood of this point can be
so

expressed as (Barrir '970)

f
Sgo G D(rso )U(r so) exp[i-rso]

J exp i hxxp2 + hzp dx dz2 xxpp zz pil p p
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v° s
0x5 5p zz

R10( 0)

ka )Gn e e facing r o ]se rv r-atU(r so (77)

= exP~lrsoJo''7(65)(

0 i

The integrals in (77) are identified with the Fresnel integrals

(AbraTodtewitz and Stegun 1964) and r i r 2p s 1 are the principal radii of
xxp zzp

and RP (0s) is the Fresnel reflection coefficient for the specular angle 0o (65).10o 0

Provided that this stationary phase point is visible and illuminated [U(d s 1e

sso

its contribution to the scattering cross section (28) is given by:

PP = '<rlpr2p P (78)

go A y 1

To determine the average scattering cross section per unit area assume that

the principal radii of curvature(r r )at the stationary phase (specular) points

and the location of these points are independent random variables. Furthermore

for very rough surfaces the phase v r o can be assumed to be uniformly distributed

from - to , (Beckiann and Spizzichino 1963). Thus it follows from (77) that

PP P 2 -f -i -1
<( > "Tr r N> ( P (nn in) (79)

go lp 2p 1o 2ps

in which <r 1r 2pN> is the average of the product of the principal radii of curvature

and N the number of specular points per unit area. The probability that a specular

point (with slope n - n ) will be both illuminated and visible is given by P ni

The expression for P. has been given by Sancer (1969) for rough surfaces with

normal distributions. The physical optics result derived by Kodis (1966) for

perfectly conducting surfaces is

'0 '= r r r 2p><N> .(80)



1-19

Barrick (1968) determined the relationships between the surface statistics

and r lpr. N> and has shown that (80) reduces to
p

<oPP> = sec 4 yp(hp, ) , (81)
s xsp' zsp

which is in agreement with (71). In the derivation of (81), however, it is

nt necessary to assume that the rough surface is normally distributed.

Furthermoreit is incorrect to assume as implied by (80) that rlpr2 p and N

are ;tatistically independent.

It has been shown that in order to obtain the physical optics solution (that has

appeared previously) from the full wave solution, the coefficient of exp[iv"r I in the

sj
integrand of (3)is replaced by its value at the stationary phase points (-n=T )(Section 4).

Furthermore, t, obtain the geometrical optics solutions, the full wave integral of (3)

is evaluated using the stationary phase (or steepest descent) method. It has also

been shown (Section 3) that for slightly rough surfaces, the full wave solution

redtxes to the perturbation solution upon replacing the unit vector normal to the

rough surface, n, by the unit vector normal to tile reference surface, av, in

the coefficient of cxp ~i, (3).

6. Concluding Remarks

Ihe full wave approach has been applied to problems of scattering and

d-polarizatica of radio waves by random rough surfaces. The general, full wave,

expression for tie scattering cross sections per unit area is given in

Appendix A for the incoherent and :cient fields. In Set:ion 3,which deals with

-,lightly rough surfa es, the full wave solutions are shown to reduce to the

perturbation solut i,). . For high frequ-icies it is shown that when the stationary

phase approximation is valid, the full wave solutions reduce to tile physical

optics--Kirchoff solution. Thus the two general approaches applied to scattering

by random rough surfaces, perturbation and physical opt icq, are derived here as
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special cadse; of Lhe full wave solution. The full wave approach precisely

determines the limitations of the earlier approaches as well as reconciles the

differences between them. Thus, physical optics, geometric optics and

perturbation theory area1special cases )f the full wave approach (Se,. 5).

The full wave solution which is invariant under coordinate transformations also

satisfies reciprocity, duality and realizability in electromagnetic theory

(Bahar 1980).
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Appendix A

Substituting the full wave solution (3) into (32) and assuming that

the rough surface height and gradient are uncorrelated and that the probability

density function for the shadow function U(r ) depends only upon the gradient of

the rough surface, the expression for the incoherent scattering cross section reduces to

S<aPQ> =T I <sPQ > 2 (vyiVy)-<P > X(Vy); exp[iVxd+ iv Zd4dXd dzd (A.1)

-oo y

For simplicity the rough surface is also assumed to be statistically homogeneous

and isotropic, thus the surface height correlation function <h(x,z)h(x',z')>

depends only upon the distances

rd= (x-x')ax + (z-z')a z = xdax+ zd az  (A.2)

In (A.1) X and X2 are the characteristic function (37) and the joint characteristic

function (38). Furthermore,

S P Q = DPQ(r)D PQ*(r')U(r)U(r')/(n.ay )(n'ay) (A.3)

in which DP Q is given by (29) and U is the shadow function (24). The

symbol < > in (48) denotes the statistical average, thus in order to evaluate

<SP> for the general case, it is necessary to multiply S by the joint probability

density function p(n,U) and integrate with respect to hx,h z (7) and U. To

facilitate the evaluation of (A.1), it is rewritten as follows,

k2 -o

<aPQ 0 PQ 2 -- PQ> I] 's -
' S > X 2-  

,') n"a -

-00 y

exp ivx xd + iv z j dxd dzd (A.4)

For high frequencies it can be shown (Sancer 1969, Brown 1978), that

<sPQ> <J " Q U1-/ - 2 (A.5)

a y

w --- -- --.--- --------.-.---.. Y
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Thus (A.4) reduces to

<O P  > =  . .n. I • X -I X 2 xpLi vxXd+ Vz dx dzd

< _ rO jX 21<tDPQu 2>

+ w _ X21 PU>1 xLi iv z jdx dz(A6
IT x d z d d d(A)

For slightly rough surfaces (perturbation solution)

fD~ {D ~ (A.7)

n 3 i.

where DPQ is given by (35). Furthermore, when the stationary phase approximations
0

are valid (see Section 4)

Ij - ay ;
where DPQ/ is given by (64). Thus if X) 2<< i or when either the physical

optics or perturbation approximations are valid, the second integral in (A.6) can be

neglected and <cPQ> reduces to (48).

PQ c
The scattering cross section for the coherent fields <a > corresponds to the last

term in (48). Thus

k 2  12eCJPQ >C = ( ),,< D > exPl iv x +iV z]dxdz

~y

k A PQ2
y X(Vy)<_ ->J sinc(v L )sinc(vzLz) (A.9)

n'ay

in which sinc(u) = sin(u)/u and the projection of the rough surface on the xz

plane is given by

A y 2L 2L (A.10)
y X 2

--W• -- i I VII
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Thus for the specular case 
v = v = 

A

x z

2 PQ 2

7 - ( y - - (A.11)
n'a

y

The total scattering cross section corresponds to the first term in (A.1). Thus

PQT= PQiVx-x')+ iv (z-z')jdxdz dx'dz' (A.12)

,A- j 2 y y x z
y

PQ c
V However, except for very rough surfaces, where <o > , (A.11) can be neglected,

the total scattering cross section <oP >T is evaluated by summing the incoherent

and coherent terms (A.6) and (A.11) respectively rather than by directly evaluating

(A.12) (Beckmann and Spizzichino 1963). Thus,

<oPQ> T <oPQ>c + <PQ> (A.13)
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Figure Caption

Fig. 1, Plane of incidence, scattering plane and reference x,z plane.
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PART IT

SCATTERING CROSS SECTIONS FOR COMPOSITE RANDOM SURFACES--

FULL WAVE ANALYSIS

Abstract

The full wave approach to rough surface scattering is applied to composite ,model.

rough surfaces. In this work the principal distinguishing features of the

individual rough surface is its correlation eistance. Thus this model can be

applied to scattering by rough seas as well as hilly terrain.

It is shown that the full wave approach accounts for both specular scatter and

Bragg scattering. The scattering cross section for the composite surface, with

two or more roughness scales, is shown to be a weighted sum of the scattering

cross sections for the individual rough surface heights. Shadowing effects are

accounted for explicitly in the analysis. The full wave solutions satisfy

reciprocity, duality and realizability relationships in electromagnetic theory.

i.

I
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I. Introduction

Solutions have been derived for the scattering cross sections per unit area

of the rough surface using the full wave approach (Bahar 1981a,b). For slightly

rough surfaces the full wave solutions are shown to reduce to the perturbation ,

solution (Barrick and Peake 1968, Barrick 1970). When the major contributionls

to the scattered fields come from the neighborhood of stationary phase (specular)

points of the rough surface, the full wave solutions are shown to reduce to physical

optics--solutions (Beckmnann and Spizzichino, 1963). Since the results of !h. two

general approaches to random rough scattering perturbation and physical optics,

are shown to be special cases of the full wave solutions, the limitations of these

approaches can be precisely determined and the differences between them reconciled,
(Bahar 1981a,b).

The principal motivations for this work are to extend the full wave analysis to

composite rough surfaces with multiple roughness scales and to explicitly account

for shadowing effects in the results. The main distinguishing feature of the

individual rough surface h. is its correlation distance Z.. However, no res-

trictions are made on the variance of the rough surface heights (I. his work can
01

therefore be applied to scattering by rough seas or by hilly terrain. In tht* treatment

of composite rough surfaces by Brown (1978) the feature that distinguishes the two

surfaces consideredih I and h2 7 is the surface wave number kd where the "spectral

splitting" occurs.

The principal expressions derived for the scattering cross section, using

the full wave approach, are summarized in Section 2. The high frequency approxima-

tions are extended in Section 3, to cases in which the reference planes of

incidence and scatter are not coplanar. In Section 4 a composite model of the

rough surface with different roughness scales is analyzed. A two scale model is

first considered and the result is givon by. equation (44). Using this riodel

the full wave analysis is shown to ac -ount for both specular scat.er and Bragg

scattering (54). 'oL composite surfaces with N uncorrelated surface heights

hi, the solution is given by (55). In general,it is shown that the scatteiing

cross section for the composite rough surface is a weighted sum of the cross sections

for the individual rough surfaces hi . In Section 5 shadowing effects are explicitly

accounted for in the analysis.
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2.1 Formulation of the Problem

The expression for the scattering cross section per unit area, based on the

full wave solutions for the incoherent fields, is given by (Bahar 1981b)

k2
IQ k PQ 'I

Qv I PQ ' jexp Livx + ivzz !dx dz
7T) ~ 2 y y y - x d z d d d

The superscripts P,Q VH denote vertically and horizontally polarized waves respec:-

tively. The first superscript denotes the polarization of the scattered wave and the

second the polarization of the incident wave. The symbol < > denotes statistical average

Furthermore,

< SPQ > Q ()DQ (Ur)U(r) >-DQU 2> (2)
( -n a y ) ( -n .a y ) y

in which DPQ(r) the scattering coefficientsU(r) is the shadow function

and n is the unit vector normal to the rough surface (Bahar 1981b). The vector

v is

v = k (nf-n) v a + v a + v a (3)o xy y y z z

The free space wave number is k and the unit vectors in the direction of the0

incident and scattered waves are n and n respectively. The rough surface characteristic

function and the joint characteristic function are x(vy) and X2 (vy,-vy ) respectively.

It is assumed that rough surfaces are statistically homogeneous and isotropic, thus

the surface height correlation function < h(x,z)h(x',z') > depends only on the

distances (see Fig. 1)

rd a + (z-z')az = Xd ax + Zd az (4)

and the correlation distance is smaller than the width of the illuminated surface.

Furthermore in (1) it is assumed that the rough surface height and slope are

uncorrelated. It is also assumed that distribution of the shadow function U(r )

depends primarily opon the probability density function for the slope of the

rough surface (Sancer 1969). The elements DPQ(P,Q=V,H) of the 2 x 2 matrix D are

given by (Bahar 1981a,b)

...I. . .
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_Lf WV i VHi f HV i HHi- f- VV i Viii f. IUViH
D f (F C-F S I)-S (F C ,-F S i) C (F S i+ F C )-S (F,# i S+F H C i

D=C inTfFT =Cio f.VVI Vfli f HV i fHHi. E VV i V iI f IiV 1W H i10( 0 C -F S )+Cf(F C i-F Sni S(F Si,+ F C ))+C (F S,+F C i

(5)

in which, for the incident and scattered waves (denoted by superscripts i and i

respectively)

( i S f - o~ ,S s i ,I f f

T and T=

s J 1 0 C = cosIPf, S sini f  (6)

The transformation matrices Ti and Tf relate the vertically and horizontally

polarized components with respect to the reference plane (normal to a y) to th.,

vertically and horizontally polarized components with respect to the local plane

normal to the unit vector

n = n( ,h ) x Vf/IVfI = (-h a + ;-hzI/h 2i ++ h2 (7a)
xzx I . (a

in which

h = ;h/ x and h = h/az (7b)
x

The function

f(x,y,z) = y - h(x,z) 0 (8)

defines the rough surface between medium 0, y > h(x,z), and medium 1, y h(x,z). The

angle between the reference and local planes of incidence and scattering are 0i and .

respectively. The elements of the

matrix FVV F

F HV  FHH]

F P F

are functions of the ingles of incidence and scatter in the local coordinate systm

and the relative permittivity f: r and permeability wr of the two media surrounding

the interface f(x,y,z) - 0. Thus F.PQV,H) are explicitly functions of the unit

vectors (see Bahar 1981a,b)
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n sin0 cos b a - cosO a + sine sine a (o o y 0 z

-f f t- f- f f
n sinO cosO a + cos f a + sin f sin f a (1Ob)

o x 0 y 0 z

n sinycos6 a + cosy a + siny sin6 a (ii)-- n~cs x Y z

and the electromagnetic parameters ;r and vr respectively (Bahar 1981b).

It has been shown (Bahar 1981b), that on assuming

k2 < h2 > = k2 0 2 << I, n-a - 1 and U(r) 1 (12)
0 0 0 y "

the full wave solutions for the scattering cross sections per unit area reduce to

the first order perturbation solutions (Barrick and Peake 1968, Barrick 1970)

PQ~ > 4 rk W j 6 f~ i 2 (13)
0 =47k WvxA zcoe 0Cos(0a

in which

f i PQ= .inP f i
2 cos f coso PQ [cFQ(cosOf + cosei)j (14a)

y

The upper and lower sigus in @ 4a) are used for Q=1- and V respectively. The

spectral density of the rough surface height function is given by the Fourier

transform of the height correlation function (Barrick 1970, Ishimaru 1978).

W(VxVz )= IJ exp'iVx Xd + iv z d < h(xz)h(x',z') - dx dz (14b)
x f xd zd d d

Subject to the perturbation approximation, the local angles of incidence and scatter

are approximated by the angles of incidence and scatter with respect to the

reference plane normal to a . Thus for instance
y

in in _-i. _-j
C n
0  coso0  = -n *n -n ay = cosa 0 = G (15.)

Under special conditions (Bahar 1980b), the high frequency approximation of the

full wave solution (1) is obtained by setting

-f
n n Iinl a n n a 1J= n a n = 0 and U(r)= 1 (16)

y s y s y s

Thus, if the planes of incidence and scatter with respect to the reference plane
(y=o) and the local plane at the specular points (where n = n ) are coplanar, and

iif the specular points exist on the rough surface,

.1
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k 0 2 cos 2 P .s. 2

< PQP > -- (- - .0 R o0)1 6p (17 1)cosO f + cos(
os 00 Q

in which is given by £

> 2 (v'-vy)-fx(v ), 1 xp[iv x + 1Vz zdX dz (17b)

and R P(0s) is the Fresnel reflection coefficient for vertically and horizontally
I0 o

polarized waves (P=V,H) evaluated at stationary phase points where

n - n = (nf-n i)/nf _ (18)

Thus 
s

-i- 2 -f-2 2 s 2= i f- j f f 'i(n*n)2  (nfn) 2 = cos20i (C) 2 iLl+cosO coso-sin o sino cos(¢f_$i) ( 19)
( n) Cs0 0c 0)0

With the exception of the reflection coefficient R o(0' ,), which is evaluated
lo o)

at the stationary phase (specular) point rather than at the angle of incidencE,

0, the solution (17 ) is the same as the Physical Optics solution(Barrick 1970,bvck.

and Spizzichino 1963, Ishimaru 1978). Thus for very good conducting boundaries

(:R (Os ) -* 1), < a P > is independent of polarization in the Physical Optics
l(0 0

limit. Furthermore in view of the Kronecker delta 6pQ in (17) there is no

depolarization (< aP Q > = 0 for P#Q). This is due to the assumption

1- f
_n a n = 0 ( 16.Y

Using the full wave solution ( 1) as a starting point for the present analysis,

the scattering cross sections are derived for cases in which neither the

assumptions made for the perturbation analysis (12) nor the assumptions made

for the Physical Optics analysis ( 16) are valid. For instance, even for very

high frequencies, the assumption that the major contributios to the (incoherent)

scattering cross sect -on come from the stationary phase (specular) points of

the rough surface cannot in general be satisfied (Bahar 1981b).

In view of experimental evidence that neither the perturbation nor the

Physical Optics approach aptly determine the scattering cross section for all n and

-f
n ,and the realization that simple, single scale models of rough surfaces are not

suitable for a large variety of relevant problems, expressions for the scattering cros.s

}I
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sections have been derived for composite rough surfaces (Barrick and Peake 1968,

Wright 1968, Valenzuela 1978, Brown 1978, Burrows 1973). The full wave approach

will therefore also be applied to composite rough surfaces and compared with earlier

approaches to this problem.

3. High Frequency Approximation When the Reference

Planes of Incidence and Scatter Are Not Coplanar.

The Physical Optics solution (17) was derived on assuming tha, the principal

contributions to the incoherent scattered field come from the neighborhood ef

stationary phase (specular) points of the rough surface where n = n . Furthermore
s

it is assumed that the phase in the integrand of the full wave solutions varies

very rapidly fcr the shadow region and therefore U(r s) can be set equal to unity

-7 i is agrt
(Bahar 1981b). These assumptions are satisfied if the angle--1 is larger than

the mean value of the slope of the rough surface o (Bahar 1981b). Thus to satisfy

these assumptions it is necessary that

tan(z- ) >= coto if >tan 6 = 2a/Z (20)2 o o

where u and Z are the variance and the correlation distance for the rough

surface. However, the additional assumption that the reference planes of

incidence and scatter are coplanar

[n a I = 0 (21)

is not satisfied in general even when (20) is satisfied. While the assumption

(2]) simplifies the Physical Optics solution (17) considerably, it results

in no depolarization. In this section the restriction (21) is lifted and the

appropriate high frequency results are derived.

The value of the matrix D at the stationary phase points is obtained by

setting n - n (18) in equation (5). Thus

4S
- -,' - ', -- - - -- --- "- . .. .
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" fs Vs Is fs ils is fs Vs is fs Hs is]i C. Ro +S RS C RoS -S Ro C

ona o fs Vs is f- Fs is fs Vs is fs us isl
YnnsS R 'C -C 'R S S R oS +C R oC

R Vs Hs t fs , is .Vs is Hs .fslo0 +R],tan tani Rlotanqp -Rlotan4),

i fs is -f-i ott 1
=CoC C, F3(n n I

.Vs fsi Its is RVs fs is HS,
RN tan'-R ,tan ._ tany tanQ +±R.ioo oJo (22)

in which

i -f -i 2 s f i Ps P sCF 3 (n n 2 Cos 0 /(C + C ), = R o( ) (23)
0 0 0 1o 1o o

Ci+Cf-Ci(l+coS2 os) f f is is CosCS = o o) is s S 0os = Si sin2 s  
S sin (24a)

0 0 sin2Oe

and

C +C -C (1+cos2Os) Sisin(qfi )
c fS = I co sf = o 0 0) fs s nf S oi ( (

f, So sinp = .. (24b)S osin2 sin2OS

The angle 00 is given by (19) and0

c csO s = sinei cf cosf sf sinef (25)0 0 V 0 0 OsO 0 O ( 5

Thus the stationary phase, high frequency approximation, for the scattering

cross sections for P V,H and Q = 11,V (P#Q) are

k2 fs2'q 2sS 2C,C cos Qs fs Is
CT + + R tan(h tano' (2 a)f i

0 0

and
k' 2

C fsC Cs e^s2C. cose~
PQ > __o=o ( o2 is QS .fs 2

7 f I ) o Rlotan~o J (26b)
C +C

0 0

For highly co-iduc:ting boundaries

< VV > < : >d VH <0V > (27)

For backscatter however, since

is fs and cosO s 1 (28)w 0
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both (17) and (26) reduce to

Pr 1.ko 2 R~
2

PP I (O)Ia (29a)
• B -t i[ loi

and 0

nPQ

< U >B 0 , P#Q (29L)

For slightly rough surfaces (Bahar 1981b)

2 2 f i 2
T = k2(C +C ) W(v vz (30)

Thus, except for normal incidence the perturbation and stationary phase approximations
PO)

for <CT for slightly rough surfaces are not in agreement. However it should be noted

that for backscatter both the small slope perturbation solution n = a and stationaryY
for <;PQ> B (P#Q) vanish. The full wave solution for <,PQ B (P4Q)phase appeoximat ionsfo '>BB

den not vanish ':nce SP Q (1) vanishes for backscatter onLy at the specular points or

where Y z 3y.

4. Composite Surface with Multiple Roughness Scales

In this section it is assumed that the composite surface under consideration

has two or wore distinct classes of roughness that are uncorrelated. Consider

first the case in which the two statistically independent surface height variances

and 0 2 are small and

2 2(Vy I) 2 lnd(Vyo 2) 2 hl 2
y < I and v y ao2 > < h, - h 2  = 0 (31a)

n a (31b)

y

Thus <S 'Q, PQ y__ can be factored out of the integral (1) and since

y ~2 2
Lnega (h) and sice

exp-ivy(h1 +h 2 )J 1+1 (t+h2) - Vy(h +h,) (32)
y 12y.1 2 y 1~

it follows that

2 2 22
2 )/2 (33)

and

2 + 2 h h - h h2 )
x2(vy1 - v ( + h

2, 2 2
= 1 - v02 (-el - U 2 (1-C 2 )J (34)

4 _ Il
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in which the surface height correlation functions h 11  > and < h h0 are
11 2 2

expressed in terms of the correlation coeffivients C1 and C(2 that dept-nd only
1

upon distance rd (4). Thus the integral (17b) reduces to

oo

}expriv x + ivZ zd v (< h li , + < h h > )d ddzd

2 x IF2 X

+W2 (Vxkv ) + W (v ,v )j'
-1. Y-i Ix 2 xz

in which for i = 1,2

*x'i= x1 xd +ivz zf 2 - i12 ]dxddzd (35b)

The characteristic functions and the spectral density functions for the rough

i i
surface height h. are A and W respectively. Thusin thl-, case since in

() n ay the scattering cross sections for the incoherent fields is the sum

of the scattering cross sections for the individual slightly rough surfaces h

and h2.

For the more general case the surface height variances a01 and a0o2 are not

assumed to be small. However, the correlation distance P is assumed to be much

smaller than Z2. Thus by definition
2'

CI( = = C/e and C2(=P2 C2 /e (36)

in which P - (xd+z e is the Neperian number and it is assumed that,

1 << k12 
<< P2 (37)

where 2I2 is a constant. In this case <cT PQ> (i) is given by

12

< P Q k - 0 2 1 1 -2 2

< "(3 __ b 21x 2- x ]exp[iv xd+ iVZd ]dxddZd (38)

The significance of the assumption (37) is that for distances 0 < p < 912

x1(0)= 1 > I x and X2  X 2 (0) 1 (39)

i4
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and for distance p 9.

I2 * IX 12and x2(O) - 1 > X2 > IX2 1  
(40)

Assuming for example normal distributions for h.
1

Xi(v exp(-v 2 u2./2) i=1,2 (41)
y y oi

and

x2(v'_v) expL-v a o(1-Ci(P) )j i-1,2

Thus

1 2 I12 2 2Olex~y o2,l~ 2 ep2 0o2X2 2-1x =exp(-v (2 [ y o0 %2 (-C 2)]-exp 2

:exp(-v 2 1 )'exp(v C)- + exp - 2 2 -exp(-v 2
y y -Vy 0o2 y o2
I ! ' , 1 ,  2 , 2

S - +i I LX; 2 1 2 (43)

and the scattering cross section can be wriLten as

PQ < PQ 'PQ (44 a)

in which for i = 1, 2,
k2

PQ. k o 2

an S >X 2 -Ix I ]xp[ivx d + v z Zd]dxd dzd (44b)

and SPQ>, the statistical average of SPQ , (2) is given by

SPQ  (n,U)dh dh dU (4 4c)Sx z

where p(n,U) is the joint probability density function (Sancer 1969). If the variance

of the surface height h1 is small
I  , land (43) reduces to

Q POQ 2 2 (45)0>=<oP.1>1 + <a , Vy 'jo1(5
y 2l

Before th, transform in (44b) can be evaluated it is necessary to determine <SPQ > ,

(44c) for the composite rough surface. When the stationary phase approximations

are valid for high frequencies and shadowing effects are not very significant n

can be replaced by ns in (45) and as in (26)

<sPQ' = SPQ 
. 2

In.a n- (46)

When the mean value of the slope of the composite surface, a°  (20) is very smalltanB 0 2o/ ,< 1 n (47)

F i °y
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the perturbation approximation for (44c) can be used as in (13)

<SPQ> S PQ D PQ 
2

n-a
y

For near grazing angles where

Coro i ' f << tan 2a/ (49)

shadowing effects become significant and even at high frequencies (46) cannot be

used. In this case~since U(r ) = I only for those portions of the rough surface
S5

that are almost horizontal (n'a 1), the perturbation approximation
ynay could be used for near grazing angles (49) even at high frequenc'ies.

For the general case however, it is necessary to evaluate <SQ> (44 c), using te

statistics of the slopes of the composite surface (see Sec. 5). Provided that (37) is

satisfied and either the perturbation or stationary phase approximations are

valid such d-EtS P Q is independent of position, (46) , (48) , the scattering

cross sections (1) can be expressed as follows:

k2 sp%2]<-Q QI]I°Q 2 <s"s, +l [x 112 PQ> 2 (50)

For rough surfaces with normal distributions (Becknmann and Spizzichino 1963)
•2 2 2 2 2 =2v2 )2

rv .Z.) exp(-v (0 V 2 /4) = v W(v ,v ),(V a << 1y oi y oi xz i y x'z yoi
2mS  

2 exp(v 2 2 exp(-v /4), v a 1

.y Oim=I  m! xz I y oi

Trk 2)21exp-(z2 Vo)2] (V ao >> 1 (51)

Vyrjo i yo

where

2 2 (52)
v (v +V)
xz x Z

The expression (50) simplifies considerably if the variance of the surface height

2 2
h is small (44) while the variance of the surface height h, is large (v 2 0 2<<

1~ yolhI heght 2islarg
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and v 2 >> 1). In this special case the contribution fr n the t erm -'
V 04

dominanL when
cot '  tan , = 2o/ (53)

0 - o

On the other hand only horizontal portions of the rough surface (n= a ) are both

illuminated and visible for grazing angles, (49) , and the contribution from the

term ": P(>I is dominant near grazing angles. Thus if in addition to conditio:1 (37)

V J2 " and v r 2 '> 1, at high frequencies (50.) can be approximated by
y o2 0o2

k
2

+ P0Q - PQ> + < PQ2 (54)
T S1 2

PQ P
in which S-1 and S are given by (46) and (48) respectively. The scattering

cross sections for such composite surfaces are approximately equal to the sum of

the individual cross sections <aPQ ] and <JPQ>2 for the rough surface heights h

and h2 respectively (Barrick and Peake 1968, Barrick 1970).

The result (43) can be generalized for a composite surface represented by

the superposition of N uncorrelated surface heights h (n = 1,2.. .N) for whichn

the correlation distances Y. satisfy
n

1 12 << Z2 << Y23 << £3 .... ZN-I << kN-1,N << 9N (55)

In this case

N n N
<0 PQ TI 11 [ il12 <UPQ> = w <oPQ> (56a)

n=1 m-1  n nI n n

where
PQ K. sPQ>n[_x2  ,

<U > -<S > nX jexp iv xd + iv z jdx dz (56b)
n T 2 x d(56

The characteristic functions for the surface height hn are X2(vy,-vy) and

xn(v ), and X I. In (55) the contribution <a > to the total scattering
y n

P(9
cross section, <(3 >, due to the rough surface h is weighted by the product] n

1= m-1 (57)

Since lxiI < I (40) , the weighting factor wn is in general less than unity.
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It decreases monotonically a " n increases even when the variance .o of the

individual rough surfaces are small (v 2. <a 1, i = 1,2 ..N).
y 0

The effects of shadowing have not been accounted for explicitly in tile

solution (54). To do so it is necessary to determine the statistical averages

<SP> (45) using the joint probabilty density function p(n,U) for the rough

surtace slopes Vf (7) and the shadowing function U(r ). Both terms of the~S
r'roduc t

r< sPQ> Lx'n _ Ix n 2 = K(Xd 'Zd) ( 8
-SQ I X,2 (58)

are fun-tions of distance r (4). The two dimensional Fourier transform of the

d

product K(Xd,zd), (56) can be evaluated by determining the two dimensional

convolutions of the two dimensional Fourier transforms for <SP> and , '12 - (Brown

1978, 1980). However for high frequencies the integral expression for the

scattered fields (Bahar 1981b) may also be evaluated at the stationary phasu

points before squaring and averaging (Kodis 1966). Barrick (1968) shows

that the results are the same regardless of the order of evaluating the integral

and the statistical average. This latter approach which simplifies the

analysis will be used in Section 5 to explicitly account for shadowing in the

PQevaluation of <(PQ> (56).
n

5. Scattering Cross Sections for Composite Rough Surfaces

When Shadowing Effects are Accounted for Explicitly

To evaluate <SPQ> (44c) - for high frequencies it is convenient to represent

the joint probability density function p(n,U) in terms of the conditional

density P(UIn) (Sancer 1969, Brown 1978, 1980)

p(n,U) = p(n)p(Uln) (59)

in which p(n) is the density function of the gradient of the rough surface

Vf- nIVf1 (7) and,

p(U!) = P(nf ,fnIn)6(-1l) + l-eP2 (nf,niln),h5(U) (60)
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The Dirac delta function is 6(U) and P2 (nf, n n) is the probability that a point
-i

will be both illuminated by a source at -r n and visible at the observation point

-f prn , given the value of the gradient n(hxphz). Thus for high frequencies '(S >

can be replaced by its stationary phase approximation (Sancer 1969)

2 p(n)p(Un )U2(rs)dh, dh dUJ~ -5 5 X Z
y n

2PQ 2

= P P2(nf ni n s (61)

The expression for the probability P2(nf ,n ns)has been given by Sancer (1969)

for rough surfaces with normal distributions. The above approximation for

<sPQ. is appropriate for scattering from the rough surface h2 with tht large

correlation distance £2. Thus

k2 Dp, 2
o -i

<oP>2 7 P2 (nf,n I) , 2  (62)
n a-

y n
PQ 2

in which D/-ayin2 is given by (22) and .f2 (35b) is given by (51) for
S

surfaces with normal distributions. Thus for surfaces with (v ya2)2>> 1, ,J2 is

proportional to the joint probability density function p( s) for the gradient at

the stationary phase points (51).

For angles smaller than the mean value of the slope B (53)

<cPQ>2 is the dominant term in the solution (44). However for angles larger

than B (near grazing angles 0 ijf) (49), scattering due to the small scale rough-
0

ness dominates. This is either because the joint probability density function at the

stationary phase points, p(n s) is very small or because the probability is very

small that these stationary phase points are illuminated and visible,

r-
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2 I 1). S er ing 11e t" tie SmHa II scale .ighness is rm)st

slgn.t! icat for upar grazing angles where the contributions from the specular

point s are very small. Thus tie Ctmtributi,. tc, the total scattering cross section

due to thle term , 0 P Q, (44) is primarily front the near horizontal portions of

the rough surface that are both illuminated and visible. Hence for the term

PC <SPQ> can be approximated by

<SPQ> DPQ 
2

0 p(n) p(UIn)l
2 
(r,)dh, dh z dU

n-a

y

- pPQ ( f -i
P ,n ,u=l) (63)

Wa
y

where f -IP l ( 11n 1~; 7 1) -= I2 ~in)p(n)dhx dh y (64)

is tho ptobabtlity that the rough surface is both illuminated and visible.

Thus for the surface with the small roughntess scale

2

PQ 2p2(nf ni,U=i)W(Vv) (65)

in which W (v xv y) is the spectral density function for the rough surface h

(35).

The scattering cross section for the composite rough surface is therefore

obtained by summing (65) and (62) while accounting for the weighting function

w = [,i in (56). This weighting function (w, < 1) has the effect of

damping the ontributlon from the specular poi- ',ecause of the superposition of

the surface hI (with the small roughness scale) ott the surface h2 (with the

large roughness scale).

On deriving the expression () for the scattering cross section an integral

containing the term

has b..rn ne,;lected (Rahar 19811). This term can be ignored either If lxiI'

or when the perturbation or stationary phase approximations are valid.

"1- t....



IT,-16

6. Concluding Remarks

Using the full wave approach, a general expression has been derived for the

scattering cross sections for composite rough surfaces comprised of a superposition

of N uncorrelated rough surface heights hi. The distinguishing feature of the differ-

ent rough surface heights is the correlation distance Z. (55) and not the surface

height variance. It is shown that the scattering cross sections for the composite

surface are a weighted sum of the scattering cross sections for the individual rough

surfaces. Thus for a composite surface with two roughness scales, the first slightly

rough and the second very rough and with the longer correlation distance, the scattering

cross section accounts for both Bragg scattering and specular scatter. However, the

contribution due to specular scatter, by the very rough surface, is slightly damped

as a result of the superimposed slightly rough surface. Shadowing effects have been

accounted for explicitly in the analysis. If the correlation distance Zi is not the

distinguishing feature of the different rough surface heights h., the starting point

of the analysis for the composite surface is (38). Since (43) assumes that the

correlation distance is the distinguishing feature of the different rough surface

heights h. (37), it cannot be used in generaland the cross section for the composite1

surface is not given by a superposition of the cross sections for the surface

heights hi (44), (45) or (56).
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Figure Caption

Fig. 1. Plane of incidence, scattering plane and reference x,z plane.
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